TD5 : Produit de convolution et transformée de Fourier

Exercice 1. Soient $f \in L^1(\mathbb{R}, \lambda)$ et $g \in L^p(\mathbb{R}, \lambda)$ avec $1 \leq p \leq +\infty$ et λ la mesure de Lebesgue. Montrer que pour presque tout $x \in \mathbb{R}$, la fonction $y \mapsto f(x-y)g(y)$ est intégrable sur \mathbb{R} et que le produit de convolution de f et g défini par

$$f \star g(x) = \int_{\mathbb{R}} f(x - y)g(y) \, dy$$

vérifie $f \star g(x) = g \star f(x)$ et

$$||f \star g||_p \le ||f||_1 ||g||_p$$

Exercice 2. Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha < \beta$. On pose $f = \mathbb{1}_{[-\alpha,\alpha]}$ et $g = \mathbb{1}_{[-\beta,\beta]}$.

- 1. Montrer que le produit de convolution de f et g est bien défini.
- 2. Calculer $f \star g$ pour tout $x \in \mathbb{R}$.
- 3. Étudier la régularité de f, g et $f \star g$.

Exercice 3. Soient $1 \le p < +\infty$ et $1 < q \le +\infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. On suppose $f \in L^p(\mathbb{R}, \lambda)$ et $g \in L^q(\mathbb{R}, \lambda)$ avec λ la mesure de Lebesgue.

1. Montrer que le produit de convolution de f et q est une fonction bornée sur \mathbb{R} qui vérifie

$$||f \star g||_{\infty} \le ||f||_p ||g||_q$$
.

2. Montrer que $f \star g$ est uniformément continue sur \mathbb{R} . Indication : on pourra utiliser l'exercice 8 du TD2.

Exercice 4. Soient $f, g \in L^1(\mathbb{R}, \lambda)$ avec λ la mesure de Lebesgue.

- 1. Supposons que g appartient à $\mathcal{C}_c^{\infty}(\mathbb{R})$. Montrer que $f \star g$ est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Soit $\delta \in \mathcal{C}_c^{\infty}(\mathbb{R}, \mathbb{R}_+)$ telle que $\int_{\mathbb{R}} \delta(x) dx = 1$. Étant donné $\varepsilon > 0$, on pose, pour tout $x \in \mathbb{R}$,

$$\delta_{\varepsilon}(x) = \frac{1}{\varepsilon} \delta\left(\frac{x}{\varepsilon}\right).$$

- (a) Montrer que pour tout $\eta > 0$, $\lim_{\varepsilon \to 0} \int_{|x| > \eta} \delta_{\varepsilon}(x) dx = 0$.
- (b) Soit $f \in \mathcal{C}_c(\mathbb{R})$. Montrer que $f \star \delta_{\varepsilon} \in C_c^{\infty}(\mathbb{R})$ et que $\lim_{\varepsilon \to 0} \|f \star \delta_{\varepsilon} f\|_1 = 0$. Indication : on pourra utiliser l'uniforme continuité de la fonction f.
- (c) En déduire que \mathcal{C}_c^{∞} est dense dans $L^1(\mathbb{R},\lambda)$.

Exercice 5. On considère \mathbb{R} muni de la mesure de Lebesgue λ . La transformée de Fourier d'une fonction intégrable est définie par

$$\mathcal{F}(f)(t) = \hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-ixt} \, d\lambda(x).$$

- 1. Soit $F(x) = e^{-|x|}$. Calculer la transformée de Fourier \hat{F} .
- 2. Soit a > 0. Quelle est la transformée de Fourier de $f_a(x) = \frac{1}{a^2 + x^2}$?