Partiel 12 Mars 2020

Les documents et les calculatrices ne sont pas autorisés.

Questions de cours.

- 1. Soient $a, b \in \mathbb{R}$ et I = [a, b]. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions sur I à valeurs dans \mathbb{R} .
 - (a) Donner la définition de convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur I.
 - (b) Montrer que si $\sum f_n$ converge uniformément sur I alors $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0 sur I
 - (c) Montrer que si pour tout $n \in \mathbb{N}$ la fonction f_n est décroissante et la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement vers la fonction nulle sur I, alors $(f_n)_{n \in \mathbb{N}}$ convergence uniformément sur I.
- 2. Vrai ou faux, sans justification. Soit f une fonction continue définie sur $]0,\infty[$ à valeur dans \mathbb{R} .
 - (a) Si $\lim_{t \to +\infty} f(t) = 0$ alors l'intégrale $\int_1^{+\infty} f(t) dt$ est convergente.
 - (b) Si l'intégrale $\int_1^{+\infty} f(t) dt$ est convergente alors $\lim_{t \to +\infty} f(t) = 0$.
 - (c) Si $\lim_{t\to 0} f(t) = +\infty$ alors l'intégrale $\int_0^1 f(t) dt$ est divergente.
 - (d) Si l'intégrale $\int_0^1 f(t) dt$ est absolument convergente alors elle est convergente.

Exercice 1. Le but de l'exercice est de calculer $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

- 1. Étudier la convergence de l'intégrale $\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt$.
- 2. Montrer que

$$\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Indication : utiliser une intégration par parties et un changement de variable

3. Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{t^2} dt$. Montrer que

$$\lim_{n \to +\infty} \frac{I_n}{n} = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

- 4. Pour tout $n \in \mathbb{N}$, on pose $A_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\sin^2(t)} dt$ et $B_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\tan^2(t)} dt$.
 - (a) Étudier la convergence des intégrales A_n et B_n .
 - (b) Montrer que $\int_0^{\frac{\pi}{2}} \sin^2(nt) = \frac{\pi}{4}$.
 - (c) En déduire $A_n B_n = \frac{\pi}{4}$.
- 5. En utilisant le fait que pour tout $x \in [0, \frac{\pi}{2}[, \sin(x) \le x \le \tan(x), \text{ montrer que pour tout } n \in \mathbb{N}, B_n \le I_n \le A_n.$
- 6. En utilisant $A_n=n\frac{\pi}{2},$ conclure que $\int_0^{+\infty}\frac{\sin(t)}{t}\,dt=\frac{\pi}{2}$

Exercice 2. Pour tout $n \in \mathbb{N}$ et pour tout $x \in I = [0,1]$, on pose

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement et uniformément sur I vers une fonction f dérivable à déterminer.
- 2. Montrer que pour tout $n \in \mathbb{N}$, f_n est dérivable et que la suite $(f'_n)_{n \in \mathbb{N}}$ converge simplement sur I vers une fonction g à déterminer.
- 3. Comparer f' et g. Que pouvez-vous en déduire sur la convergence uniforme de la suite $(f'_n)_{n\in\mathbb{N}}$?
- 4. Calculer $\lim_{n \to +\infty} \int_0^1 f_n(t) dt$.